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Abstract

The effect of preferential flow on the stability of landslides is studied through numer-
ical simulation of two types of rainfall events on a hypothetical hillslope. A model is
developed that consists of two parts. The first part is a model for combined satu-
rated/unsaturated subsurface flow and is used to compute the spatial and temporal wa-5

ter pressure response to rainfall. Preferential flow is simulated with a dual-permeability
continuum model consisting of a matrix domain coupled to a preferential flow domain.
The second part is a soil mechanics model and is used to compute the spatial and
temporal distribution of the local factor of safety based on the water pressure distri-
bution computed with the subsurface flow model. Two types of rainfall events were10

considered: long duration, low-intensity rainfall, and short duration, high-intensity rain-
fall. The effect of preferential flow on slope stability is assessed through comparison
of the failure area when subsurface flow is simulated with the dual-permeability model
as compared to a single-permeability model (no preferential flow). For the low-intensity
rainfall case, preferential flow has a positive effect on the slope stability as it drains the15

water from the matrix domain resulting in a smaller failure area. For the high-intensity
rainfall case, preferential flow has a negative effect on the slope stability as the majority
of rainfall infiltrates into the preferential flow domain when rainfall intensity exceeds the
infiltration capacity of the matrix domain, resulting in larger water pressure and a larger
failure area.20

1 Introduction

Landslides are commonly triggered by rainfall events. Hydrological models may be
integrated with slope stability analysis methods to calculate the factor of safety and
predict the time and magnitude of landslides (Crosta and Frattini, 2008; Shuin et al.,
2012; Aleotti and Chowdhury, 1999; Westen et al., 2006). Combined hydro-mechanical25

models can roughly be divided into two types: simplified conceptual models (Montra-
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sio and Valentino, 2008; Dai et al., 2002) and numerical models (Stead et al., 2001;
Jing, 2003; Brinkgreve et al., 2010; Pastor et al., 2008), and have different levels of
complexity depending on the scale and the research purpose.

The limit equilibrium method or infinite slope stability approach are frequently inte-
grated with Richards’ equation (Lanni et al., 2013; Ng and Shi, 1998; Godt et al., 2008;5

Shuin et al., 2012; Wilkinson et al., 2002; Talebi et al., 2008; Greco et al., 2013) or the
empirical infiltration model (Arnone et al., 2011; Simoni et al., 2008; Qiu et al., 2007) for
landslide hazard evaluation. The limit equilibrium method and infinite slope approach
assume or search for a potential failure surface. The factor of safety is defined as the
ratio between the maximum retaining force and the driving force (Lanni et al., 2013;10

Lu et al., 2012). Although the underlying assumptions of the slope failure mechanism
have limitations (Huang and Jia, 2009; Griffiths et al., 2011), the simplified slope stabil-
ity analysis method has low computational demand and is widely used for geotechnical
analyses at the slope scale (Talebi et al., 2008; Tsai and Yang, 2006; Abramson, 2002),
watershed and catchment scale (Borga et al., 2002a, b; Baum et al., 2010; Wilkinson15

et al., 2002).
The strength reduction method (Griffiths and Lu, 2005; Huang and Jia, 2009) or

local factor of safety method (Lu et al., 2012) can result in similar factor of safety val-
ues and locations of the critical slip surface as the limit equilibrium method, while no
assumption is needed about the critical failure surface (Griffiths and Lu, 2005; Ham-20

mouri et al., 2008; Kim et al., 1999). The location, shape, and magnitude of the plastic
deformation area are used to quantify the slip surface and factor of safety (Griffiths
and Lane, 1999). Geotechnical engineering software and numerical models – such as
FLAC (Itasca, 2002), PLAXIS (Brinkgreve et al., 2010, based on the strength reduction
method) – have been widely applied for slope stability analysis under the influence of25

transient hydrological conditions, such as rainstorms (Mukhlisin et al., 2008; Hamdhan
and Schweiger, 2011) and reservoir water level variations (Huang and Jia, 2009; Zhou
et al., 2014). The Darcy–Richards equation combined with pedotransfer functions is the
most widely used approach in current software packages (Beven and Germann, 2013),
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but can not effectively simulate preferential flow resulting in rapid infiltration (Nieber and
Sidle, 2010; Beven and Germann, 2013).

In highly heterogeneous slopes, preferential flow and transport can fundamentally
influence subsurface flow (Jarvis, 2007; Hendrickx and Flury, 2001) and contaminant
transport (Köhne et al., 2009; Allaire et al., 2009; Debieche et al., 2012; Zehe et al.,5

2001). A chain of connected macropores is commonly found in various types of soils,
including forest soil and semiarid land (Uchida et al., 2001; Jarvis, 2007; Flury et al.,
1994). For example, an earthworm burrow can extend from the surface deep into the
soil, as can decayed plant roots or soil cracks (Jarvis, 2007; Beven and Germann, 1982;
Hendrickx and Flury, 2001). The self-organizing preferential flow network will become10

active and hydraulically connected with an increase in soil saturation (Nieber and Sidle,
2010). The saturated hydraulic conductivity of preferential flow paths is significantly
larger than that of the soil matrix (Beven and Germann, 1982; Köhne et al., 2009).
A significant portion of subsurface stormflow (Uchida et al., 2004; Zhang et al., 2006;
Beven, 1981) is transmitted via preferential flow paths (Nieber and Sidle, 2010). Pref-15

erential flow through macropores, fractures, and other local high-permeability zones is
extremely rapid, and contributes instantly to high pore-water pressures in deep soils
(Jarvis, 2007).

Quantification of landslide triggering mechanisms is an essential step in landslide
forecasting. Field studies have shown that preferential flow is one of the major mecha-20

nisms affecting the timing and location of landslides (Sharma and Nakagawa, 2010). In
forested hillslopes, minor preferential flow paths, such as soil pipes and macropores,
are clearly associated with slope failure (Hencher, 2010; McDonnell, 1990; Uchida
et al., 2001; Krzeminska et al., 2012; Debieche et al., 2012). Besides the fact that in-
ternal erosion in preferential flow paths deteriorates the slope mass and reduces the25

soil shear strength, the occurrence of preferential flow can give rapid access to the
deeper soil and groundwater system, reduce soil shear strength (due to pore pressure
changes), and influence the timing and frequency of landslides (Köhne et al., 2009;
Hendrickx and Flury, 2001).
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Preferential flow and solute transport have been simulated at various scales includ-
ing the scales of pores, soil columns, hillslopes, and catchments (Šimůnek et al., 2003;
Gerke, 2006; Köhne et al., 2009) using increasingly sophisticated models such as the
dual-porosity/dual-permeability model (Gerke and van Genuchten, 1993a; Jarvis et al.,
1991; Larsbo and Jarvis, 2003), the multi-permeability model (Wu et al., 2004; Greco,5

2002; Gwo et al., 1995), and the empirical model (Armstrong et al., 2000; Weiler, 2005;
Vrugt et al., 2004; Mulungu et al., 2005). The dual-permeability model is widely used
because of its clear physical concept and powerful simulating ability (Roulier and Jarvis,
2003; Kodešová et al., 2005; Gerke and Köhne, 2004; Köhne et al., 2006; Christiansen
et al., 2004; Weiler, 2005; Therrien and Sudicky, 2005; Vogel et al., 2000). The dual-10

permeability model assumes that the soil consists of two interacting, overlapping pore
domains. The matrix domain with relatively low permeability represents the soil mi-
cropores where flow is governed by Richards’ equation. The preferential flow domain
represents the highly permeable preferential flow paths, such as macropores, frac-
tures, cracks, or large pores between soil aggregate. Preferential flow is described by15

Richards’ equation (Šimůnek et al., 2008; Gerke and van Genuchten, 1993a) or the
gravity-driven kinematic wave equation (Larsbo and Jarvis, 2003; Jarvis et al., 1991;
Greco, 2002). The water exchange between the two domains is driven by the pressure
head difference between the two domains (Pirastru and Niedda, 2010; Gerke and van
Genuchten, 1993b). Dual-permeability models have proven to be effective for preferen-20

tial flow simulation, but have not been incorporated into slope stability models.
The objective of this study is to quantify the temporal and the spatial effect of pref-

erential flow on slope stability, and to analyze its underlying hydrological mechanisms
using numerical experiments of rainfall-induced shallow landslides. This paper is or-
ganized as follows. First the subsurface dual-permeability hydrological model is de-25

scribed. The subsurface hydrological model is sequentially coupled with a soil me-
chanics model and a stress-field-based local factor of safety slope stability method
(Sect. 2.2). The numerical experiments and parameterization are discussed in Sect. 3.
The hydrological and geotechnical results are given in Sect. 4. The influence of
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preferential flow on subsurface hydrological processes and consequent slope stabil-
ity is discussed in Sect. 5 by comparing the results of single and dual permeability
models.

2 Methods

2.1 Subsurface flow model5

The single-permeability model is described by one Richards’ equation to represent flow
in a homogenous soil. The dual-permeability model divides the flow domain into two
overlapping and interacting continua, where two coupled Richards’ equations are used
to describe the matrix flow and preferential flow (Gerke and van Genuchten, 1993a):

[Cf +ΘfSs]
∂hf

∂t
= ∇[Kf(∇hf +∇z)]−

Γw

wf
(1)10

[Cm +ΘmSs]
∂hm

∂t
= ∇[Km(∇hm +∇z)]+

Γw

wm
(2)

where the subscript f indicates the preferential flow domain and the subscript m indi-
cates the matrix domain. C is the differential water capacity (dθ/dh) (L−1), Θ is the
effective saturation (–), h is the pressure head (L), t is time (T), z is the vertical co-
ordinate (positive upward), K is the isotropic hydraulic conductivity (LT−1), Ss is the15

specific storage (L−1), w is the volumetric ratio of the preferential flow domain or the
matrix domain over the total soil volume (–), and Γw is the water exchange term (T−1)
between the two domains.
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The Brooks–Corey function is used to describe the hydraulic properties of both the
matrix and preferential flow domains (Brooks and Corey, 1964):

Θ=
θ−θr

θs −θr
=

{
|αBCh|

nBC , αBCh < −1

1, αBCh ≥ −1
(3)

K = KsΘ
2/nBC+lBC+2 = Ks|αBCh|−2−nBC(lBC+2) (4)

C = − dθ
d|h|

=

{
αBCnBC(θs −θr)|αBCh|

−nBC−1, αBCh < −1

0, αBCh ≥ −1
(5)5

where θ is the water content (L3 L−3), subscripts s and r denote saturation and residual
state, Ks is the saturated hydraulic conductivity (LT−1), and αBC, lBC, nBC, are fitting
parameters.
Γw is the water exchange rate between the two domains (Ray et al., 1997):

Γw = αwKa(hf −hm) (6)10

where αw (L−2) is the effective water transfer coefficient, and the relative hydraulic
conductivity Ka (LT−1) is calculated by averaging the hydraulic conductivities of the two
pore domains (Arora et al., 2011; Laine-Kaulio et al., 2014):

Ka =
Kf +Km

2
. (7)

The volumetric ratio of the preferential flow domain and matrix domain sum up to one:15

wf +wm = 1. (8)

The total water content of the soil is the weighted average of the water contents of the
two domains:

θ = wfθf +wmθm. (9)
13061
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The same holds for the total saturated hydraulic conductivity of the soil:

Ks = wfKsf +wmKsm. (10)

Boundary conditions may be specified pressure head, specified flux, or mixed (Chui
and Freyberg, 2009). In the case of a dual-permeability model, specified flux i (infiltra-
tion from rainfall) is divided between the matrix and preferential flow domains:5

i = wfif +wmim (11)

where im and if are boundary fluxes to the matrix and the preferential flow domains
(LT−1), respectively. The two domains have an equal opportunity to receive rainfall and
are initially equal to rainfall intensity R (Dusek et al., 2008):

R = i = if = im. (12)10

As the matrix domain has a larger volumetric ratio (wm > wf), the infiltration process is
initially dominated by the matrix domain. Once the specified flux into the matrix is larger
than its infiltration capacity, the boundary condition changes to specified pressure head
and the specified flux for the preferential flow domain is increased to:

if =
R −wmim

wf
. (13)15

Once the specified flux into the preferential flow domain is also larger than the infil-
tration capacity, the boundary conditions of both the matrix and the preferential flow
domain are changed to a specified pressure head of zero and overland flow occurs.

2.2 Slope stability analysis method

The slope stability analysis is based on the local factor of safety approach (Lu et al.,20

2012). The plane-strain linear elasticity model is used to calculate the stress (Abram-
son, 2002), which is governed by a momentum balance equation:

∇(σ )+γb = 0 (14)
13062
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where σ is a stress tensor (ML−1 T−2) with three independent stress variables in two-
dimensional space, γ is the bulk unit weight of the slope material (ML−2 T−2), and b is
the unit vector of body forces with two components. Neglecting the relative air pressure
in Bishop’s equation, the effective stress equation is:

σ ′ = σ − χpw (15)5

where σ ′ is the effective stress, pw (ML−1 T−2) is the pore water pressure, and χ (–) is
the matrix suction coefficient, which is usually approximated by the effective saturation
(Lu et al., 2010).

The local factor of safety FLFS is defined as the “ratio of the Coulomb stress at the
current state of stress to the Coulomb stress of the potential failure state under the10

Mohr–Coulomb criterion” (Lu et al., 2012):

FLFS =
τ∗

τ
(16)

where τ∗ is the limit Coulomb stress and τ is the actual shear stress (ML−1 T−2). Appli-
cation of the Mohr–Coulomb failure criterion gives:

FLFS =
2cosφ′

σ ′1 −σ
′
3

[
c′ +

σ
′
1 +σ

′
3

2
tanφ′

]
(17)15

where c′ is the effective cohesion (ML−1 T−2), φ′ is the friction angle, σ ′1 and σ ′3 are
the first and the third effective stress for the variably saturated soil (ML−1 T−2).

The influence of hydrology on slope stability is manifested in two ways. First, the
unit weight function depends on the water content (Eq. 9). Second, the effective stress
depends on the pore water pressure. In the dual-permeability model, the pore water20

pressure of the preferential flow domain is used in the computation of the effective
stress.
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Figure 1 summarizes the structure of coupled dual-permeability and slope stabil-
ity model. Two Richards’ equations are coupled by the water exchange function. The
hydrological results are sequentially coupled with a soil mechanics model without con-
sidering possible feedback of soil deformation on soil properties and the hydrological
process.5

3 Setup of the numerical experiments

3.1 Slope geometry

Consider a slope of 23◦ consisting of fine-grained lithology such as clay shales with
a more permeable weathered top soil layer (Bogaard, 2002; Berti and Simoni, 2012;
Picarelli et al., 2006); this is a typical slope that is vulnerable to failure. The slope is 6 m10

high and 15 m long and consists of two layers with a 2 m thick homogeneous upper soil
layer (see Fig. 2).

The model domain is 42 m by 25 m to reduce the influence of boundary effects on
hydrological and slope stability results. The computational mesh and the boundary con-
ditions are shown in Fig. 2. The boundary conditions of the subsurface flow model are15

atmospheric at the surface; the left-hand and bottom sides are no-flux boundaries. The
right-hand side consists of a seepage boundary condition for the upper soil layer and
a specified pressure head to mimic a constant groundwater table for the lower layer.
For the soil mechanics model, the surface is a free boundary, the bottom boundary
(only horizontal displacements) and the left- and right-hand sides (only vertical dis-20

placements) are all roller boundaries.
Since the pressure head in the surface area can change drastically during rainfall,

a very dense mesh was used near the surface to accurately model the transient hy-
drological conditions. The mesh density of the upper layer is approximately 0.25 m
(vertical) by 0.5 m (horizontal). A coarser mesh was defined in the lower part of the25

slope as a less dynamic condition will occur here.
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3.2 Parameterization

The volumetric ratio of the preferential flow domain wf is 0.1; a typical range is
0.025 ∼ 0.2 (Köhne et al., 2002). The pore-size distribution of the preferential flow
domain allows unsaturated infiltration before the matrix domain is saturated (Dusek
et al., 2008). A comparison is made between the hydrological results of the single-5

permeability and the dual-permeability models. The total weighted saturated hydraulic
conductivity of the dual-permeability model is equal to the saturated hydraulic con-
ductivity of the single-permeability model. The water exchange between the matrix
and preferential flow domains depends on the hydraulic conductivity between the two
domains Ka and the water exchange coefficient αw (Eq. 6). Equilibrium between the10

preferential flow and matrix domains is reached quicker for smaller values (closer to 1)
of Ksf/Ksm and larger values of αw. Moderate values are used for Ksf/Ksm (100 in the
upper layer and 5 in the lower layer) and for αw (0.2 m−2).

The soil hydraulic parameters are presented in Table 1. Preferential flow plays an
important role in the upper soil layer where there is an abundance of macropores, but15

less so in the lower soil layer where macropores are almost non-existent (Bogner et al.,
2013). In other words, the volumetric percentage of preferential flow domain is still the
same, but in the lower layer the saturated hydraulic conductivity of macropores are
more similar to the pores of the matrix. The more permeable top layer is sandy loam
and the fine-grained lower layer is clay; the soil hydraulic parameters are taken from20

the UNSODA database (Nemes et al., 2001; Leij, 1996).
Current laboratory practice for soil hydraulic testing cannot measure the parameters

for two hydraulic functions and two water retention curves for one soil sample (Arora
et al., 2011; Köhne et al., 2009). There are two approaches to parameterize a dual-
permeability model. The first approach determines the parameters from an infiltration25

experiment and inverse modeling, which results in a non-unique parameter set (Dusek
et al., 2008; Köhne et al., 2002; Arora et al., 2011). The second approach, which is
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adopted for this study, uses the same hydraulic parameters for both domains, except
for the saturated hydraulic conductivities (Vogel et al., 2000).

The parameters of the soil mechanics model are also shown in Table 1. In numerical
modeling, effective cohesion c′ is scale dependent, and is usually defined as a linear
function of the slope height to obtain identical values of the safety factor when apply-5

ing it to different slope sizes (Griffiths and Lane, 1999; Lu et al., 2012). In this study,
two sets of cohesion values were selected; a homogeneous case where the effective
cohesion of both layers is 5 kPa and a case where the effective cohesion of the upper
layer is smaller (c′1 = 3 kPa) than the lower layer (c′2 = 6 kPa).

Two rainfall events are modeled: a low-intensity rainfall of 2 mmh−1 for 150 h and10

a high-intensity rainfall of 20 mmh−1 for 15 h. The initial condition is the steady pore
water pressure distribution obtained from running the model with a daily rainfall of
1.64 mmday−1 (600 mmyear−1) for 10 years.

4 Results

4.1 Subsurface flow15

A schematic diagram of the subsurface flow components in the study area is shown in
Fig. 3. Note that the study area is a small part of the model domain (Fig. 2). The main
fluxes are the infiltration from rainfall (blue), the inflow/outflow along the left side and
bottom (black), the seepage outflow along the surface (red) and the outflow along the
right boundary (green).20

Hydrological results for the single- and dual-permeability models are shown in Figs. 4
and 5, respectively. The graphs on the left are results for the long-duration, low-intensity
rainfall case while the graphs on the right are results for the short-duration, high-
intensity rainfall. Integrated fluxes, as shown in Fig. 3, are reported in m2 h−1.

For both models, all the rainfall infiltrates into the slope during the beginning of25

the rain event and infiltration decreases when rainfall exceeds infiltration capacity and

13066

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/13055/2014/hessd-11-13055-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/13055/2014/hessd-11-13055-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 13055–13099, 2014

Quantification of the
influence of

preferential flow on
slope stability

W. Shao et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

part of the rainfall turns into overland flow. For the single-permeability model and low-
intensity rainfall overland flow starts after 95 h (or 190 mm of rainfall) while for the high
intensity rainfall overland flow starts after 8.5 h (or 170 mm of rainfall) (Fig. 4a and b).

In the dual-permeability model (Fig. 5), the rainfall infiltration is divided over the two
domains and additional rainfall infiltrates into the preferential flow domain when the5

matrix domain reaches infiltration capacity. Recall that the matrix domains is 90 % of
the domain, and the preferential flow domain is 10 % of the domain. A smaller fraction
of rainfall infiltrates into the preferential flow domain for the case of low-intensity rainfall
(10–15 %) than for the case of high-intensity rainfall (50–85 %). Overland flow starts
after 80 h (or 160 mm of rainfall) for the low-intensity case and after 60 h (or 120 mm of10

rainfall) for the high-intensity case.
The seepage outflow increases along all three boundaries during the rainfall event

(Figs. 4c, d, and 5c, d) and is smaller than the infiltration rate (storage is increasing).
In the dual-permeability model and the low-intensity rain, outflow along the surface
boundary starts after 115 h (or 230 mm of rainfall) while for the high-intensity rain out-15

flow starts after 9 h (or 180 mm rainfall). The outflow rate along the surface boundary
depends on the groundwater level in the upper layer. In the dual-permeability model,
the outflow along the right boundary is approximately 10 times larger for the preferential
flow domain than for the matrix domain, which is consistent with their volumetric ratio
and their saturated hydraulic conductivity ratio. The water exchange between the two20

domains in the dual-permeability model is shown in Fig. 5e and f. For the low-intensity
rainfall case, the water exchange from the preferential flow domain to the matrix domain
increases during the first 100 h and then decreases, while the water exchange from the
matrix domain to the preferential flow domain is almost always increasing (more neg-
ative). For the high-intensity rainfall case, the water exchange from the matrix to the25

preferential flow domain is negligible, while the water exchange from the preferential
flow domain to the matrix domain reaches more than 0.3 m2 h−1, which is similar to
the infiltration into the preferential flow domain. After five hours, approximately 75 % of
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infiltration into the matrix domain is water exchange from the preferential flow domain
(Fig. 5f) and 25 % infiltration from the surface boundary (Fig. 5b).

4.2 Water balance

The integrated rainfall and water storage for the study area are shown for both models
in Fig. 6. The water balance is obtained by integrating all flow components along the5

boundaries of the study area. The numerical water balance errors are between 2 and
3 %.

For all cases, the storage increase flattens out when the inflow decreases (Figs. 4
and 5). For the high-intensity rainfall, the dual-permeability model stores 8 % less water
than the single-permeability model. The total storage after 150 h of low-intensity rainfall10

is less than after 15 h of high-intensity rainfall, probably caused by the longer time that
water can drain from the study area under low-intensity rain.

For the dual-permeability model, the water exchange has a significant influence on
the storage change in each domain. For the low-intensity rainfall, the storage in the
preferential flow domain does not increase much after 6 h (Fig. 6). For the high-intensity15

rainfall, the storage in the preferential flow domain increases rapidly over the first 3 h as
very little water infiltrates into the matrix domain due to the low infiltration capacity of
the matrix. After 3 h, the preferential flow domain has almost reached full saturation and
the large pressure difference between the preferential flow domain and matrix domain
causes extensive water exchange (Fig. 5f).20

4.3 Water content

The water content distribution in the study area is shown in Fig. 7 for both the single-
permeability model (left-hand panels) and the dual-permeability model (center and
right-hand panels). The water exchange rate between the matrix and preferential flow
domains of the dual-permeability model is shown in Fig. 8. The infiltration process25
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of the dual-permeability model differs significantly from that of the single-permeability
model.

The initial water content distribution in the matrix and preferential flow domains
is similar for both models. During the rainfall events, the wetting front in the single-
permeability model develops parallel to the surface and propagates downward. This5

holds for both low and high rainfall intensities (Fig. 7 left-hand column). The wetting
front generally reaches the groundwater table at the toe of the slope first, after which
the infiltrated water continuously enlarges the saturated area.

In the dual-permeability model, the combined effects of the preferential flow and the
matrix flow show a more complicated response. For the low-intensity rainfall, infiltration10

is dominated by matrix flow, as 90 % of the subsurface consists of the matrix. Because
the rainfall intensity is lower than the saturated conductivity of the matrix domain, rainfall
never exceeds infiltration capacity (Fig. 5a), so that 90 % of the rainfall infiltrates into
the matrix domain and 10 % of the rainfall infiltrates into the preferential flow domain.
The pressure are different between domains, that directly cause the water exchange at15

the matrix wetting front (Figs. 5e and 8a). At first, water quickly reaches the soil layer
interface by preferential flow where it transmits to the matrix, although this exchange
flux is very small (Figs. 5e and 8a). After sufficient time (70 h), a much stronger matrix
flow (taking about 80 % of the infiltrated rainfall) reaches the soil layer interface and
generally reverses the water exchange direction (Fig. 5e). Overall, water exchange20

during low-intensity rainfall in the study area is dominated by flow from the matrix to
the preferential flow domain (Fig. 8a and b).

For the high-intensity rainfall, the rainfall intensity is 8.4 times the matrix saturated
hydraulic conductivity. The percentage of infiltration into the matrix domain decreases
from 90 to 50 % within the first half hour, and continues to decrease to less than 20 %25

after 1.5 h. In contrast, the percentage of rainfall that infiltrates into the preferential flow
domain increases from 10 to over 80 % after 2 h. Water in the preferential flow domain
quickly reaches the deeper soil layer and forms a perched groundwater table (Fig. 7),
where a significant amount of water infiltrates into the matrix (Fig. 5f).
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4.4 Slope stability

The local factor of safety is computed based on the computed water pressure distribu-
tion (Fig. 7). The distribution of the local factor of safety is shown in Fig. 9 for the initial
condition and after 150 h (low-intensity rainfall) and 15 h (high-intensity rainfall) for both
the single-permeability model and the dual-permeability model and for the case with5

different cohesion values for the upper and lower layers. The case with equal cohesion
values is not shown because the potential failure areas are very small.

A local factor of safety below 1 indicates a potential failure area. The area with a FLFS
below 1 was determined every time interval (5 h in case 1, and 0.5 h in case 2) and is
shown by the black line in Fig. 9. Slope stability is related to both the specific weight of10

the wet soil and the pore water pressure in the soil. The specific weight changes due
to changes in water storage are relatively small, but changes in water pressure have
a significant effect on slope stability, especially in the area of the perched water table.

The size of the potential failure area is plotted vs. the cumulative rainfall in Fig. 10
for the two different rainfall events and two sets of cohesion values. The results for the15

same cohesion values (c′1 = c
′
2 = 5 kPa) are shown in Fig. 10a. For the low-intensity

rainfall, the failure area is very small and is approximately the same for both perme-
ability models. For the high-intensity rainfall, the failure area in the single-permeability
model is larger than for the low-intensity rainfall, but the trend is similar. The failure area
in the dual-permeability model is significantly larger. Failure starts after 60 mm rainfall,20

and the failure area continues to grow during the rainfall infiltration process.
The results for different cohesion values (c′1 = 3 kPa, c′2 = 6 kPa) are shown in

Fig. 10b. For the low-intensity rainfall, the failure area is 0.7 m2 in the single-
permeability model after 20 mm of cumulative rainfall. The size of this area shows
almost no increase until approximately 220 mm of cumulative rainfall, when the ground-25

water table starts to rise (Fig. 7). The failure area of the dual-permeability model is 40 %
smaller than that of the single-permeability model as the preferential flow domain drains
more water into the matrix domain. For the high-intensity rainfall, the failure area of the
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dual-permeability model is larger than of the single-permeability model, as for the case
with equal cohesion values. The failure areas of both models increase fairly quickly to
2 m2, or 5 % of the upper layer in the study area. The failure area increases to 5 m2 in
the dual-permeability model and to 3 m2 in the single-permeability model.

The slope stability result are directly related with subsurface hydrological results. For5

the low-intensity rainfall, the failure area for the single-permeability model is very similar
in size and location to the dual-permeability model as the location of the water table is
very similar in both models (Fig. 7). The initial condition of the dual-permeability model
is slightly more stable than that of the single-permeability model, since the preferen-
tial flow domain has a higher drainage capacity and, consequently, a lower pore water10

pressure. In the case of low-intensity rainfall, the matrix flow dominates the ground-
water recharge and, consequently, the slope instability. Furthermore, the pore water
pressure in the preferential flow domain is very low due to its strong drainage ca-
pacity. As a result, the failure area calculated by the dual-permeability model under
low-intensity rainfall is slightly smaller than that calculated by the single-permeability15

model (Fig. 10a). The location of the failure area is similar in the single- and the dual-
permeability domain (Fig. 9).

For the high-intensity rainfall, the failure area is significantly larger for the dual-
permeability model than for the single-permeability model as the perched water table
in the preferential flow domain is much more extensive in the dual-permeability model20

as compared to the single-permeability model (Fig. 7). The regular wetting front of the
single-permeability model does not reach the interface between soil layers, and the
failure area is limited to the toe of the slope. For the dual-permeability model, the high-
intensity rainfall results in a rapid infiltration through preferential flow, which quickly
reaches the interface between soil layers, and increases the degree of saturation and25

pressure head of the deeper soil. Positive pore water pressure occurs in the preferen-
tial flow domain before the entire slope is fully saturated, and produces a larger failure
area than in the equivalent single-permeability model.
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5 Discussion

The role of preferential flow in hydrology focuses mainly on the rapid vertical infiltration
of water and contaminant (Christiansen et al., 2004; Kodešová et al., 2005; Laine-
Kaulio et al., 2014), or the rapid discharge in hillslope and catchment hydrological
studies on discharge generation (Zhang et al., 2006; Mulungu et al., 2005). A phys-5

ically based numerical model can be used to investigate the hydrologic response un-
der predefined conditions. Prior to this study, a systematic evaluation of the influence
of preferential flow on slope stability using a fully coupled dual-permeability and slope
stability model has not been carried out. In this section, the underlying approximations
of the numerical model are explored and the influence of the chosen parameter sets10

on the model outcome is discussed. The numerical experimental results are compared
with field studies and other published numerical experiments.

5.1 Continuum model

Soil heterogeneity is one of the most difficult problems in both hydrology and soil me-
chanics studies. As an alternative to the continuum approach used here, preferential15

flow may be simulated by explicitly including fissures, pipes, or fracture networks in
discrete (or discontinuous) model. Several field studies (Hencher, 2010) and numeri-
cal experiments (Tsutsumi and Fujita, 2008; Chang et al., 2014) have focused on the
investigation and simulation of pipe flow (in soil) and fracture flow (in rock). In order
to accurately describe the geometry of the preferential flow paths, the high-resolution20

macropore image reconstruction approach (Hu et al., 2014) or the statistical approach
(Köhne et al., 2009) may be applied. Numerical simulation of these natural macropore
networks require large amounts of geometry information (Nieber and Sidle, 2010) and
computational time and are consequently limited to small-scale studies with a limited
number of pipes (Tsutsumi and Fujita, 2008) or cracks (Moonen et al., 2008).25

The dual-permeability model is a useful tool to simulate subsurface stormflow and
solute transport in a forested hillslope when the parameterization is able to capture
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the hydraulic characteristics of each domain (Laine-Kaulio, 2011; Laine-Kaulio et al.,
2014). As the dual-permeability model describes the subsurface as a continuum of two
linked domains, it is suitable for heterogeneous slopes with a high density of preferential
flow paths and not for slopes with only a few large fissures or cracks (van der Spek
et al., 2013).5

In this paper, flow in both domains is described with the Darcy–Richards’ equation,
which is valid when the macropores have a relatively small size, and the macropore
flow is still viscous (Köhne and Mohanty, 2005; Laine-Kaulio et al., 2014). When fluid
velocities are high and flow becomes turbulent, Darcy’s equation is not valid (Beven and
Germann, 2013) as may be the case in large cracks or fissures under near-saturated10

or ponded infiltration (Beven and Germann, 1982). The existence of pore necks and
dead ends in preferential flow paths reduce the occurrence of turbulent flow (Jarvis,
2007).

5.2 Coupling term in dual-permeability model

In the dual-permeability model, the two domains are in general not at equilibrium. The15

water exchange is governed by two parameters: the water exchange coefficient and
the average hydraulic conductivity between the two domains (Eq. 6). The average hy-
draulic conductivity in turn is a function of the hydraulic conductivities of the two do-
mains, which are a function of the pressure head. The larger the product, the quicker
the two domains equilibrate. Estimation of the water exchange coefficient from physi-20

cal measurements is very difficult. The most widely used equation is (Gerke and van
Genuchten, 1993b):

αw =
β

d2
γw (18)

where β is a scaling factor, d is half the representative distance between two macrop-
ores, and γw is a geometry-dependent shape factor that equals 3 for rectangular slabs25

and 15 for spheres (Ray et al., 1997). Parameter values for the water exchange term
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used in several studies are summarized in Table 2. Vogel et al. (2000) and Gerke and
Köhne (2004) conceptualize the preferential flow domain as rectangular matrix blocks
arranged as parallel slabs. A reduction factor of 0.01 or 0.001 was used to significantly
reduce the water exchange between the two domains, because the hydraulic conduc-
tivity at the matrix/fracture interface was conceptualized to be controlled by relatively5

impermeable coatings that are composed of minerals and organic matter (Ray et al.,
2004; Gerke and Köhne, 2002). Köhne and Mohanty (2005) conceptualize the dual
domain as a hollow cylindrical matrix that is filled with coarse sand in the middle to
mimic the macropore domain. Arora et al. (2011) based their parameters on a high
density of macropore columns, and they calculated Ka by averaging the hydraulic con-10

ductivities of the two pore domains (as adopted in this paper; see Eq. 7). Arora et al.
(2011) and Köhne and Mohanty (2005) did not consider the influence of coatings on
the permeability, nor was this done in this study.

It may be seen from Table 2 that the magnitude of the product αwKsa is similar for
all studies, even though some of the other values (notably the ratios Ksa/Ksm and15

the values of αw) differ by several orders of magnitude. As such, the water exchange
between all these models is likely similar.

5.3 Computation of effective stress

In the dual-permeability model, the pore water pressure of the matrix and the preferen-
tial flow domains are different and water flows from the domain with a higher pressure20

to the domain with a lower pressure. van der Spek et al. (2013) show that in the case
of varved clays with a low hydraulic conductivity of the soil matrix and a low density of
fissures, the time delay between water entering the fissure network and an increase in
pressure in the matrix is relatively large. This study concerns a system with a very high
density of macropores and consequently the numerical simulations show only a small25

time delay for the pressure propagation from the preferential flow domain to the ma-
trix domain. The pore water pressure of the preferential flow domain is used for the
effective stress calculation in the slope stability analysis, but failure time and area are
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only slightly different when the matrix pore water pressure is used for the slope stability
analysis. Field evidence (Uchida et al., 2001) and numerical experiments (Nieber and
Sidle, 2010; Lanni et al., 2013) suggest that individual preferential flow networks are hy-
draulically connected, and that the high pore water pressure build-up in the preferential
flow paths is directly correlated with slope failure.5

5.4 Implications of preferential flow for hazard assessment

This study is not the first to address the influence of preferential flow on subsurface
flow and slope stability. Preferential flow has an effect on infiltration and drainage fluxes
and as such influences the triggering factors for rainfall-induced landslides. Moreover,
storage capacity relates to the pore distribution in a soil and controls the antecedent10

condition or the cause of landslide occurrence (Hamdhan and Schweiger, 2011). The
complexity hides in the combination of rainfall characteristics and soil hydraulic prop-
erties, together with the physiographic properties like slope, soil thickness, bedrock
topography and so on, which determine the resultant pore water pressure response.
The model runs and analyses show that rainfall intensity needs to be related to both15

the soil infiltration rate of the matrix domain and the preferential flow domain. Natural
hillslopes show a bimodal response depending on the rainfall intensity which cannot be
simulated with a single-permeability model with effective soil hydraulic parameters.

Parameterization of a dual-permeability model is difficult in practice (Laine-Kaulio
et al., 2014). Therefore the use of single-permeability models with effective soil hy-20

draulic parameters prevails in regional hazard assessment (Hamdhan and Schweiger,
2011; Zhou et al., 2014). Rainfall-intensity duration plots for regional hazard assess-
ment are well established and abundantly used but do not include soil and hydrological
information (Guzzetti et al., 2007, 2008). They empirically relate precipitation intensity
and duration to observed landslides. The inclusion of more detailed hydrometeorologi-25

cal information in these analyses is ongoing. Recently, von Ruette et al. (2014) showed
the importance of spatially and temporally heterogeneous rainfall on the initiation of
landslides. In a synthetic study they showed that spatially distributed rainfall resulted
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in an increase of the number of shallow landslides as compared to uniform or intermit-
tent rainfall (short periods with higher rainfall intensities but spatially homogeneous).
They concluded that “low-rainfall intensities (below soil infiltration capacity) and long
durations resulted in more infiltration, lower stream discharge, and more saturations
and thus failure”. This is in full agreement with the results for low rainfall intensities5

in this study. Generally speaking, this holds for every case where infiltration capacity
of the matrix remains higher than the rainfall intensity even in the presence of prefer-
ential flow paths. For low intensity rainfall, the water pressure increase simulated with
a single-permeability model is generally larger than with a dual-permeability model as
drainage by the preferential flow paths is underestimated. Soil drainage is a typical10

threshold process of the soil to get rid of its high pore water pressure and in this way
stabilizes the slope. Consequently, the stability is slightly underestimated with a single-
permeability model for low intensity rainfall.

The reverse is true, however, for high rainfall intensities, when the matrix reaches
infiltration capacity early on. In these cases the preferential flow system dominates15

because water that cannot infiltrate into the matrix domain infiltrates into the preferential
flow domain instead, resulting in a large pressure increase with a negative effect on
slope stability. A much smaller pressure increase is simulated with a single-permeability
model for the same high intensity rainfall. Consequently, the stability is overestimated
with a single-permeability model even when equivalent parameters are used.20

6 Conclusions

An coupled dual-permeability and slope stability model was developed to simulate the
influence of preferential flow on subsurface hydrology and consequent slope failure
area. The dual-permeability model is able to simulate both preferential flow and ma-
trix flow. The slope failure area was determined with a local factor of safety analysis.25

Numerical experiments were carried out to study the effect of rainfall events on slope
stability with both a single-permeability (no preferential flow) and a dual-permeability
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model. A 23◦ slope consisting of two soil layers was used in the study. The upper layer
is sandy loam and the bottom layer is clay. Both the case where the cohesion of the two
layers are equal, and the case where the cohesion of the upper layer is smaller than the
lower layer were simulated. Two types of rainfall events were considered low-intensity,
long duration rainfall, and high-intensity short duration rainfall; the total amount of water5

of both rainfall events was equal. The effect of preferential flow on slope stability was
studied by comparing the failure area obtained with a single-permeability model and
a dual-permeability model for the same rainfall event.

For low intensity rainfall, the failure area of both models is similar when the cohesion
of the upper and lower layers is equal, but the failure area is significantly larger in10

the single-permeability model as compared to the dual-permeability model when the
cohesion of the upper layer is lower than the cohesion of the lower layer. During low
intensity rainfall, preferential flow has a positive effect on slope stability as it drains
water from the matrix domain and decreases the water pressure.

For high intensity rainfall, the failure area of the dual-permeability model is signif-15

icantly larger than the single-permeability model whether the cohesion values of the
two layers are equal or not. During high intensity rainfall, the rainfall intensity is larger
than the infiltration capacity of the matrix domain so that most of the rainfall infiltrates
into the preferential flow domain. As a result, the water pressure increases very quickly
in the preferential flow domain resulting in a much larger failure area than is the case20

for the single-permeability model.
In summary, the coupled dual-permeability and slope stability model is an effective

tool to better understand the influence of preferential flow on slope stability. Preferential
flow has a positive effect on slope stability during low intensity rainfall and a negative
effect on slope stability during high intensity rainfall.25
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Table 1. Summary of parameters.

Symbol Parameter name Units Upper layer Lower layer
(sandy loam) (clay)

θs Saturated water content (–) 0.412 0.385
θr Residual water content (–) 0.041 0.09
Ks Saturated hydraulic conductivity (cmh−1) 2.59 0.06
Ksf Ks of preferential flow domain (cmh−1) 23.76 0.214
Ksm Ks of matrix domain (cmh−1) 0.2376 0.043
αw Water exchange coefficient (m−2) 0.2 0.2
αBC Brooks–Corey fitting parameter (cm−1) 0.068 0.027
nBC Brooks–Corey fitting parameter (–) 0.322 0.131
lBC Brooks–Corey fitting parameter (–) 1 1
γdry Dry unit weight (kNm−3) 15.5 15.5
E Young’s modulus (MPa) 10 10
ν Poisson’s ratio (–) 0.35 0.35
φ′ Friction angle (◦) 35 35
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Table 2. Parameters setting of water exchange coefficients in different literatures.

Vogel et al. (2000) Gerke and Köhne (2004) Köhne and Mohanty (2005) Arora et al. (2011) This study
Parameter 2-D virtual Bokhorst clay soil Macropore: coarse sand Multiple-macropore

Numerical study Matrix: sandy loam in sandy loam soil

wf 0.05 0.05 0.009675 0.00033 0.1
Ksf/Ksm 1000 100 3878 63.6 100
Ksa/Ksm 0.01 0.001 1 32.1 50.5
Ksm (cmh−1) 0.012 0.1 0.056 0.13 0.238
d (cm) 1 1 11 1.89 –
γw 0.4 0.4 0.4 0.001 –
β 3 15 1.0685 0.67 –
αw (cm−2) 1.2 6 2.5×10−3 1.8×10−4 2.0×10−5

αwKsa (cm−1 h−1) 1.4×10−4 6.0×10−4 2.0×10−4 7.8×10−4 2.4×10−4
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Figure 1. Structure of coupled dual-permeability model and soil mechanics model.
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Figure 2. Computational mesh and boundary conditions.
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Figure 3. Flow component and water balance of study area.
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Figure 4. Integrated fluxes for single-permeability model and 2 mmh−1 (left panels) and
20 mmh−1 (right panels) rainfall. Rainfall and infiltration (a, b), and outflow at the right, out-
flow at the left and bottom, and outflow at the surface (c, d).
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Figure 5. Integrated fluxes for dual-permeability model and 2 mmh−1 (left panels) and
20 mmh−1 (right panels) rainfall. Rainfall and infiltration (a, b), and outflow at the right, out-
flow at the left and bottom, and outflow at the surface (c, d), exchange between matrix domain
(MT) and preferential flow domain (PF) (e, f) positive for flow from PF to MT and negative for
flow from MT to PF.

13094

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/13055/2014/hessd-11-13055-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/13055/2014/hessd-11-13055-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 13055–13099, 2014

Quantification of the
influence of

preferential flow on
slope stability

W. Shao et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 6. Storage increase of single-permeability model and dual-permeability model.
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Figure 7. Water content distribution.
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Figure 8. Water exchange rate distribution Positive values (blue) mean water exchange from
preferential flow domain to matrix, negative values (blue) mean water exchange from matrix to
preferential flow domain.
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Figure 9. Final slope stability after the rainfall event (c′1 = 3 kPa, c′2 = 6 kPa). The black line
delineates potential unstable area (FLFS < 1).
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Figure 10. Development of the failure area under different rainfall intensities and soil cohesions.
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